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Abstract
This paper shows that the coherent interferometric imaging strategy originally
proposed in the context of passive or active arrays of antennas can be
implemented for synthetic aperture radar, in which a single antenna is used
as an emitter and as a receiver at successive positions along a trajectory.
The idea is to backpropagate the cross correlations of the recorded signals
over selected frequency-spatial windows rather than the signals themselves.
The theoretical analysis shows that the signal-to-noise ratio can be enhanced
dramatically compared to the standard matched filter processing, without any
loss of resolution. This holds true when the fluctuations of the recorded signals
have a spatial correlation (along the antenna trajectory) that is larger than the
distance between two successive positions of the antenna and smaller than the
length of the antenna trajectory. As a result, a good compromise between
resolution and deblurring can be achieved by an appropriate choice of the
spatial window size.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Synthetic aperture radar (SAR) is a technique currently used to do imaging from a satellite or
a plane emitting and recording electromagnetic waves [5, 9, 10]. In the SAR configuration an
antenna moves along a known trajectory and emits a train of pulses. The waves are scattered
by the probed region and the backscattered waves are detected by the same antenna. SAR can
be described mathematically by a simple antenna model and a single-scattering approximation
[8, 18]. The received signals are then used to produce an image. The imaging process consists
of a matched filter that backpropagates the signals to a test point in a virtual homogeneous
medium. Very high-resolution images can be obtained, for which the resolution corresponds
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to that obtained by an array of antennas whose width would be equivalent to the length of
the antenna trajectory. However SAR is very sensitive to noise, since it is critical to record
the phases of the waves with high accuracy. In SAR acquisition there may be several noise
sources. First, the positions of the antenna can be identified only with a relative precision. As
it is typically a flight path or a satellite path, deviations from the nominal trajectory are more or
less unavoidable. Second, the background medium may have propagation speed fluctuations.
These two first phenomena can be modeled by assuming that the travel time for a round trip
from the theoretical positions of the antenna to the target is random. Third, backscattering
from a random collection of small scatterers (clutter) can give noise in the recorded signals
that can be modeled by an additive white or colored Gaussian noise. Other sources of noise
can be encountered [9].

SAR, being a high-resolution coherent imaging technique exploiting phase information,
is particularly sensitive to phase errors. Many signal processing or analytic procedures which
focus on explicit removal of such phase errors have been proposed and implemented to deblurr
SAR images [6, 22]. In particular, the widely used phase gradient autofocus (PGA) technique
aims at removing a large part of the phase errors [7, 12, 21] and can be implemented for various
migration procedures [20]. The PGA technique exploits redundancy in order to compensate
for phase errors, even in the presence of additive noise. With redundancy we here mean that
many observations involve the same phase error. In the SAR context this situation may occur
when (1) many high-contrast target points reflect signals above the noise level and (2) the
phase errors are range independent, or equivalently target independent. In a situation with
redundancy the PGA method is efficient because it averages the estimates of the phase errors
over many targets to give high accuracy. It is in fact optimal in order to compensate for
range-independent phase errors in the presence of small additive white noise [12]. However,
if there are only one or a few target points in the medium, or there are many targets, but
the additive noise is so strong that only one or a few targets are above the noise level, then
redundancy is lost. Moreover, if the phase errors are range dependent, then it is necessary
to break the search window into smaller sub-windows so that the errors present in each sub-
window are approximately range invariant and hence, conventional autofocus procedures can
be applied to each sub-window. If the dependence is strong and the sub-windows are small,
then redundancy is lost [17]. It is then necessary to implement a more robust strategy. In
this paper we introduce a method that does not require redundancy, which can address strong
additive white noise and range-dependent phase errors, and that does not aim at explicitly
estimating the phase error.

Recently coherent interferometric (CINT) imaging has been shown to achieve a good
compromise between resolution and deblurring in noisy environments [1, 3]. It involves
backpropagating the cross correlations of the recorded signals over appropriate space-time or
space–frequency windows rather than the signals themselves. The choice of the sizes of the
windows is the critical point since it allows one to select only the coherent contributions of the
imaging process. It has been used to process data sets obtained from active or passive arrays
of antennas using wave signals propagating through a heterogeneous medium [2, 4].

In this paper, we propose a CINT implementation for SAR imaging. In section 2, the
conventional matched filter processing used in SAR is recalled and expressed in a suitable
way in order to introduce in section 3 the CINT strategy. The resolution and noise properties
of the CINT strategy in the context of SAR are studied and numerical simulations illustrating
its performance are presented in section 4.
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2. Matched filter processing

In the classical SAR setup, an antenna located in a plane or a satellite moves along a straight
trajectory. At regularly spaced positions xn, n = 1, . . . , N along this trajectory and at regularly
spaced times nT , the antenna emits an electromagnetic pulse s(t − nT ) that is reflected by
the scatterers present in the medium, and the scattered wave Rn(t) is detected by the same
antenna. The collection of received signals (Rn(t))t,n is then used to produce an image. In
this section, we give a simple but accurate model that describes the measured signals, and also
present the usual imaging process.

The source signal used by the antenna is the chirped pulse

s(t) = 1

2
a

(
t

Tp

)
e−iωct−iπγ t2

, (1)

where ωc is the carrier (angular) frequency, γ is the chirp parameter, a(t) is the normalized
pulse shape function, and Tp is the pulse width. For instance, we may have a(t) = exp(−t2)

or a(t) = 1[−1,1](t). The choice of a chirped pulse results from a compromise between two
requirements [8]. First, the range resolution of the system improves with increased bandwidth,
as we shall see in the next sections. Thus, we would like to use short pulses. Second, the
emitted field is limited in practice by the maximal power radiated by the antenna. Thus, short
pulses have low energy and backscattered signals are buried in the noise. Therefore, SAR
systems use pulse modulation of the form (1), so that the emitted pulse is a long waveform.
The received signals are then compressed in order to synthesize the response of a short pulse.
In this paper it is assumed that the following assumption is satisfied.

Assumption 2.1. ωc � πγTp � T −1
p

This is a typical scaling for SAR configurations (see appendix). It means that the carrier
frequency is large compared to the chirp bandwidth, which in turn is large compared to the
pulse shape bandwidth, that is, we are in a situation with a high carrier frequency and a strong
chirp. Indeed, in the case a(t) = exp(−t2), the chirped pulse (1) has a Gaussian form, so that
its Fourier transform can be computed explicitly:

ŝ(ω) = Tp

√
π

2
√

1 + iπγT 2
p

exp

(
− (ω − ωc)

2T 2
p

4
(
1 + π2γ 2T 4

p

) + i
(ω − ωc)

2πγT 4
p

4
(
1 + π2γ 2T 4

p

)
)

,

which shows that the bandwidth is 2T −1
p

√
1 + π2γ 2T 4

p � 2πγTp in the regime πγTp � T −1
p .

Here and throughout the paper the Fourier transform of a function f (t) is denoted by f̂ (ω)

and is defined by

f̂ (ω) =
∫

f (t) eiωt dt. (2)

For an arbitrary pulse shape a, by a stationary phase argument, we have for πγTp � T −1
p

ŝ(ω) � e−i π
4

2
√

γ
a

(
ω − ωc

2πγTp

)
exp

(
i
(ω − ωc)

2

4πγ

)
, (3)

which shows again that the bandwidth is 2πγTp.
The antenna can be a point source, or a slotted waveguide [11], or a microstrip antenna

[19]. In this paper, we will first carry out the analysis with a point source and then show how
the results can be extended to the general antenna type. As we shall see in section 3.7, the
beam antenna pattern plays the same role in the CINT imaging process and in the matched
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filter process. The antenna moves along a straight trajectory, along the x-axis. The successive
positions of the antenna are xn = (xn, 0, 0), n = 1, . . . , N , with xn = (n/N − 1/2)Xa . The
total length of the antenna trajectory is Xa . The antenna at xn emits the signal s(t − nT ) and
records the backscattered signal Rn(t). A deramping is applied, that is, a multiplication by
the opposite quadratic phase which recompresses the signal [5], so that we obtain the signals
Sn(t) defined by

Sn(t) = exp[iωc(t − nT − 2τ0) + iπγ (t − nT − 2τ0)
2]Rn(t), (4)

where τ0 = |xN/2 − y0|/c0, c0 is the reference background velocity, y0 is the center of
the search area, and xN/2 = 0 is the center of the antenna trajectory. The set of signals
Sn(t), n = 1, . . . , N , is the SAR set of data. We remark that the variable t is sometimes
referred to as the ‘fast time’ and the variable n as the ‘slow time’ in the SAR literature.
Moreover, centering with a fixed τ0 that does not depend on n is sometimes referred to as strip
map mode. Also note that deramping is typically done in hardware to lower the frequency
band and enable analogue-to-digital conversion. Thus, only the signal after deramping is
available for image formation.

Let us assume for a while that the antenna is a point source and that there is a single
target in the medium, whose position is ys . This target acts a point scatterer. Using the Born
approximation, the backscattered field measured at the antenna is [8]

Rn(t)|single target = ω2
c

2π

∫
Ĝ(ω, xn, ys)vsĜ(ω, ys , xn)ŝ(ω) e−iω(t−nT ) dω

= ω2
cvs

2π

∫
Ĝ(ω, xn, ys)

2ŝ(ω) e−iω(t−nT ) dω,

where vs is the reflectivity of the scatterer and we have used the reciprocity identity
Ĝ(ω, x, y) = Ĝ(ω, y, x). In a three-dimensional homogeneous medium with constant
background velocity c0, the Green’s function is

Ĝ(ω, x, y)|homo = 1

4π |x − y|ei ω
c0

|x−y|
.

Therefore, in the case in which there is a single target at ys and the medium is homogeneous,
the recorded signal (after deramping) has the form

Sn(t)|homo = ω2
cvs

32π2|ys − xn|2 a

(
t − nT

Tp

− 2
|xn − ys |

c0Tp

)
exp

[
2iωc

( |xn − ys |
c0

− τ0

)]

× exp

[
4iπγ (t − nT − 2τ0)

( |xn − ys |
c0

− τ0

)
− 4iπγ

( |xn − ys |
c0

− τ0

)2]
,

and in the Fourier domain

Ŝn(ω)|homo = ω2
cvsĤ (ω, xn, ys) exp(iω(nT + 2τ0)), (5)

where we have defined

Ĥ (ω, x, y) = Tp

32π2|y − x|2 â

[
Tp

(
4πγ

( |x − y|
c0

− τ0

)
+ ω

)]
exp

[
2iωc

( |x − y|
c0

− τ0

)]

× exp

[
2iω

( |x − y|
c0

− τ0

)
+ 4iπγ

( |x − y|
c0

− τ0

)2]
. (6)
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Note that, as a function of x, y,

– the function Ĥ (ω, x, y) depends only on |x − y|/c0 − τ0,
– its amplitude is concentrated at |x − y| � c0

(
τ0 − ω

4πγ

)
(this property will give the range

resolution as we will see below),
– since ωc � πγTp, the phase varies more rapidly than the amplitude (this property will

give the azimuthal resolution as we will see below).

In general, the medium is not known and the usual SAR matched filter (or adjoint method)
is the point spread function [8, 9]

In(y) =
∫

H(t − nT − 2τ0, xn, y)Sn(t) dt

= 1

2π

∫
Ĥ (ω, xn, y) exp(−iω(nT + 2τ0))Ŝn(ω) dω, (7)

where · stands for complex conjugation. The point spread function matches the received signal
Sn against the synthetic signal H that should be the one corresponding to the situation in which
there is a point scatterer at the test point y, and the medium is homogeneous with background
velocity c0. It is the optimal filter in the sense of providing the best signal-to-noise ratio in
the presence of white noise [8, 9]. In SAR the point spread function is summed over n, which
gives the ambiguity function of the SAR system

I(y) =
∣∣∣∣

N∑
n=1

In(y)

∣∣∣∣
2

. (8)

For the introduction of the CINT strategy, it is useful to expand the ambiguity function and to
write it as

I(y) = 1

4π2

N∑
n,n′=1

∫ ∫
Ĥ (ω, xn, y)Ĥ (ω′, xn′ , y)

× Ŝn(ω)Ŝn′(ω′) exp(iω′(n′T + 2τ0) − iω(nT + 2τ0)) dω dω′. (9)

As we shall see in the following, this imaging functional produces very high-resolution
images, and it is possible to quantify its performance in terms of resolution (subsection 3.3)
and signal-to-noise ratios (subsections 3.4 and 3.5).

3. Coherent interferometric imaging

3.1. Coherent interferometric imaging strategy

The CINT strategy consists in restricting the double sum (over the antenna position) and the
double integral (over the frequency) of the imaging functional (9) to those pairs which give a
coherent contribution. Therefore, unnecessary incoherent contributions, that bring only noise,
are not incorporated. If we introduce Xd and �d the cut-off parameters in space (along the
antenna trajectory) and in frequency, then the CINT imaging functional is defined by

ICINT(y) = 1

4π2

∑
|n−n′ |�nd/2

∫ ∫
|ω−ω′|��d/2

Ĥ (ω, xn, y)Ĥ (ω′, xn′ , y)

× Ŝn(ω)Ŝn′(ω′) exp(iω′(n′T + 2τ0) − iω(nT + 2τ0)) dω dω′, (10)

where nd = [NXd/Xa]. If Xd is taken larger than the length of the antenna trajectory Xa and
�d is taken larger than the source bandwidth 2πγTp, then there is no truncation and we get the
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matched filter imaging functional (9) of the SAR system. The resolution is then optimal, but
the image can be very noisy as we shall see below. As Xd and �d are reduced, the resolution
is reduced as well, but the noisy contributions are even more reduced, which results in an
enhanced signal-to-noise ratio, as we will see below.

It is also possible to interpret the CINT imaging functional as the backpropagation
of cross correlations over selected frequency-spatial windows [2]. Indeed, the expression

Ĥ (ω, xn, y)Ŝn(ω) corresponds to the backpropagation of the signal Sn (the complex conjugate
over Ĥ corresponds to the time reversal operation). Therefore, in the usual point spread
function (7), the recorded signals are backpropagated, and the matched filter functional is
obtained by summing over n and taking the square, which reads as the double sum and double
integral (9). In the CINT functional (10), we restrict the sum over diagonal bands in (ω, ω′)
and (n, n′). If these bands are larger than T −1

p and N, then we recover the matched filter
imaging functional. If the frequency band is very small, so that we only retain the diagonal
ω = ω′ and if we incorporate all spatial contributions of the synthetic array, then we obtain
the interferometric function

IINT(y) = 1

4π2

N∑
n,n′=1

∫
Ĥ (ω, xn, y)Ĥ (ω, xn′ , y)Ŝn(ω)Ŝn′(ω) exp(iω(n′T − nT )) dω

= 1

2π

N∑
n,n′=1

∫
Sn,back(t − nT )Sn′,back(t − n′T ) dt, (11)

where Sn,back(t) is the nth backpropagated recorded signal whose Fourier transform is

Ŝn,back(ω) = Ĥ (ω, xn, y)Ŝn(ω). This shows that IINT(y) is the cross correlation in time
of the backpropagated recorded signals. The CINT strategy consists in restricting the double
sum over (n, n′) in this formula to the terms that are coherent (i.e. the pairs (n, n′) such that
|n − n′| � nd/2), and to incorporate not only the diagonal ω′ = ω but also the diagonal band
|ω′ − ω| � �d/2 in which the frequency components are coherent.

The values of �d and Xd are a priori determined by the statistical properties of the
random fluctuations of the background velocity of the medium, or the fluctuations of the
antenna trajectory, or the statistical properties of the phenomenon responsible for the random
fluctuations of the recorded signals. Ideally, the parameter Xd should be the spatial correlation
radius of the recorded signals along the antenna trajectory, and the parameter �d should be
their coherence bandwidth. It is possible to perform a detailed analysis of a particular model to
determine these parameters, for instance, by studying the paraxial wave equation in a random
medium [14, 15]. However, as shown in [2], it is better to select these parameters based on
the quality of the image that is being formed from (10) and to use a feature preserving norm,
such as the bounded variation (BV) norm or the entropy, to estimate the image quality. An
adaptive procedure can be implemented, in which the values of �d and Xd are chosen in order
to minimize the BV norm of the CINT imaging functional (10). This procedure results in an
optimal compromise between resolution and smoothing [3].

3.2. A remark on the matched filter

In order to simplify the analysis, we shall here assume that the search point y = (x, y, z) and
the target point ys = (xs, ys, zs) are close to the center of the search area y0 = (x0, y0, z0) and
that the aperture is relatively small.

Assumption 3.1. |y − y0|, |ys − y0|, |xs |, |x|, |x0|, Xa � |y0|
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We can then expand

|xn − y|
c0

− τ0 = φn(r)
2c0|y0| + O

(
Xa

c0

X2
a

|y0|2
)

,

φn(r) = (x − xn)
2 − x2

0 + |r − r0|2 + 2r0 · (r − r0) − (r0 · (r − r0))
2

|r0|2 ,

(12)

where r = (y, z), r0 = (y0, z0), and r =
√

y2 + z2 is the range (i.e. the distance from the
axis of the antenna trajectory to the test point y). In the context of CINT it is of interest to

examine the support in frequency of the product Ĥ (ω, xn, y)Ĥ (ω′, xn, y). Note that for the
chirp bandwidth 2πγTp we can associate the chirp wavelength

λch = c0

γ Tp

,

and the associated Fresnel number satisfies.

Assumption 3.2. The Fresnel number Na = X2
a

/
(λch|y0|) is smaller than one or of order one.

In this regime the quantity X3
a

/
(λch|y0|2) is much smaller than one and the function Ĥ (ω, xn, y)

given by (6) is non-zero only in the frequency range for ω such that∣∣∣∣2πγφn(r)
c0|y0| + ω

∣∣∣∣ <
1

Tp

.

Therefore, the product Ĥ (ω, xn, y)Ĥ (ω′, xn′ , y) is not zero only if∣∣∣∣2πγφn(r)
c0|y0| + ω

∣∣∣∣ <
1

Tp

and

∣∣∣∣2πγφn′(r)
c0|y0| + ω′

∣∣∣∣ <
1

Tp

.

This shows that only the pairs of frequencies (ω, ω′) close to the diagonal |ω − ω′| � �a

contribute to the expression (9) of the ambiguity function and in the functional (10) of the
CINT method, where �a is defined by

�a = 2 + 6πNa

Tp

, (13)

which is of order T −1
p by assumption 3.2. This implies that CINT in frequency is usually

not useful, unless the coherence bandwidth of the medium is smaller than �a which is very
small (remember that the source bandwidth is 2πγTp � T −1

p ). The matched filter for SAR
with a chirped source is already in a CINT formulation in the frequency domain, in the sense
that the integral over (ω, ω′) is naturally restricted to the diagonal |ω − ω′| � �a . The main
reason for this is that a strong chirped source establishes a strong connection between time
and frequency. Indeed, at a given time, the spectrum is concentrated around an instantaneous
frequency, as can be shown by a stationary phase argument [8]. As a result, only the small
frequency band around the instantaneous frequency corresponding to the correct travel time
does contribute.

To summarize:

– The restriction |ω − ω′| � �d/2 in the CINT imaging functional (10) is effective only if
�d < 2�a , otherwise it does not play any role.

– If �d is larger than 2�a , then we get that the CINT imaging functional takes the form

ICINT(y) =
∑

|n−n′ |�nd/2

In(y)In′(y).

– The restriction |ω −ω′| � �d/2 can be useful if the coherence bandwidth of the received
signals is very small, i.e. smaller than 2�a .
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3.3. Range and azimuthal resolution

The resolution analysis for the ambiguity function (8) can be found in [8, 10], for instance.
Here we revisit the arguments for the resolution analysis of the CINT imaging functional when
the source is the chirped pulse (1), the medium is homogeneous, and there is a single point
target located at ys . Under these conditions the recorded signal is given by (5), and the CINT
imaging functional is

ICINT(y) = |vs |2ω4
c

4π2

∑
|n−n′ |�nd/2

∫ ∫
|ω−ω′|��d/2

Ĥ (ω, xn, y)Ĥ (ω′, xn′ , y)

×Ĥ (ω, xn, ys)Ĥ (ω′, xn′ , ys) dω dω′.

In order to get simple explicit characterizations for the resolution we make as before the
assumptions 2.1, 3.1 and 3.2. In addition, in order to separate azimuthal and range resolution
aspects we assume that y0, y and ys lie in a plane through the antenna trajectory and with
y0 = (0, y0, z0). That is, labeling the range by r = (y, z) and r =

√
y2 + z2 (and similarly for

y0 and ys), we assume

Assumption 3.3. y0 = (0, er r0), y = (x, er r), ys = (xs, er rs), where er is a two-
dimensional unit vector.

By using (6) and assumptions 2.1, 3.1–3.3 and by keeping only the leading-order terms
we get

Ĥ (ω, xn, y)Ĥ (ω, xn, ys)Ĥ (ω′, xn′ , y)Ĥ (ω′, xn′ , ys)

= T 4
p

220π8|y0|8 â

[
Tp

(
4πγ

c0

(
(r − r0) +

(x − xn)
2

2|y0|
)

+ ω

)]

× â

[
Tp

(
4πγ

c0

(
(rs − r0) +

(xs − xn)
2

2|y0|
)

+ ω

)]

× â

[
Tp

(
4πγ

c0

(
(r − r0) +

(x − xn′)2

2|y0|
)

+ ω′
)]

× â

[
Tp

(
4πγ

c0

(
(rs − r0) +

(xs − xn′)2

2|y0|
)

+ ω′
)]

× exp

[
i

2ωc

c0|y0| (xn − xn′)(x − xs)

]
. (14)

Note first that the first terms in this expression (involving â) give the range resolution
since their common support is very small and forces r to be close to rs .

Note second that the last term in (14) gives the azimuthal resolution, after carrying out
the summation over n, n′. We assume that nd = [XdN/Xa] is always much larger than one in
order to use the continuous approximation∑
|n−n′ |� nd

2

exp

[
i

2ωc

c0|y0| (xn − xn′)(x − xs)

]

∼
∫ ∫

|ξ |� Xa
2 ,|ξ ′|� Xa

2 ,|ξ−ξ ′ |� Xd
2

exp

[
i

2ωc

c0|y0| (ξ − ξ ′)(x − xs)

]
dξ dξ ′,

with

Xd = nd	x, 	x = x2 − x1.
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This assumption simplifies the computation but the analysis could be extended by using
summation formulae for exponential terms.

It is possible to distinguish four regimes, which are determined by the normalized
quantities �d/�a and Xd/Xa . We give here the asymptotic expressions of the CINT function
imaging when these parameters are, each, either much smaller than one or larger than two.

– If �d is larger than 2�a and Xd is larger than 2Xa , then the result of the matched filter
imaging functional is recovered:

ICINT(y) = I0F

(
4πγTp

c0
(r − rs)

)
sinc2

(
ωcXa

c0|y0| (xs − x)

)
, (15)

where sinc(x) = sin(x)/x and

I0 = |vs |2ω4
cT

2
p N2

222π10|y0|8 ,

F (r) =
∣∣∣∣
∫

â(r + u)â(u) du

∣∣∣∣
2

= 4π2

∣∣∣∣
∫

|a(s)|2eirs ds

∣∣∣∣
2

.

This configuration gives the optimal range and azimuthal resolutions

	r = c0

4γ Tp

and 	x = πc0|y0|
ωcXa

= λc|y0|
2Xa

.

– If �d is larger than 2�a and Xd is much smaller than Xa , then the CINT imaging functional
is proportional to

ICINT(y) = I0
Xd

Xa

F

(
4πγTp

c0
(r − rs)

)
sinc

(
ωcXd

c0|y0| (xs − x)

)
. (16)

The range resolution is not affected:

	r = c0

4γ Tp

,

while the azimuthal resolution is reduced compared to the matched filter functional

	x = πc0|y0|
ωcXd

= λc|y0|
2Xd

.

– If �d is much smaller than �a and Xd is much smaller than Xa , then the CINT imaging
functional is proportional to

ICINT(y) = I0
Xd

Xa

�dTpG

(
4πγTp

c0
(r − rs)

)
sinc

(
ωcXd

c0|y0| (xs − x)

)
, (17)

where

G(r) =
∫

|â(r + u)|2|â(u)|2 du.

The range resolution is not affected up to a shape factor (see the discussion below).
– If �d is much smaller than �a and Xd is larger than 2Xa , then the CINT imaging functional

is proportional to

ICINT(y) = I0�dTpG

(
4πγTp

c0
(r − rs)

)
sinc2

(
ωcXa

c0|y0| (xs − x)

)
. (18)

9
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Table 1. Resolution of the CINT method for different values of Xd in the absence of noise. Only
the azimuthal resolution depends on Xd . The range resolution is always c0/(4γ Tp).

Xd Xd � Xa 2Xa < Xd

Azimuthal resolution
λc|y0|
2Xd

λc|y0|
2Xa

Thus, the resolution is not changed relative to the matched filter imaging functional.

Conclusion on the azimuthal resolution (see table 1). The azimuthal resolution is determined
by Xa if Xd is larger than Xa and by Xd if Xd is smaller than Xa . Therefore, when Xd

is smaller than Xa , the azimuthal resolution does not depend on the length of the antenna
trajectory anymore. However, the parameter Xa still plays a role in the signal-to-noise ratio,
as we will see in the following subsection.

Conclusion on the range resolution. The range resolution is determined by the bandwidth
2πγTp. The choice of �d plays a marginal role in that the normalized function that gives the
shape of the focal spot in the range direction goes from F when �d is larger than �a to G
when �d is smaller than �a . It turns out that the function F can be broader or narrower than
G, depending on the source pulse shape a(s). Let us consider three different cases, in which
the pulse shape functions a(s) have the same maximum and the same L2-norm (i.e. the same
energy):

case 1:

{
a(s) = 1[−1,1](s)

â(u) = 2sinc(u)
(19)

case 2:

{
a(s) = exp(−πs2/8)

â(u) = 2
√

2 exp(−2u2/π)
(20)

case 3:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(s) = 5

3π2|s|5/2

[
π

√
15|s|Si

(
2
√

15|s|1/2

5

)
− 5|s|1/2 sin2

(
3πs

5

)]

â(u) = 5

(
1 −

√
5|u|√
6π

)2

1(−6π/5,6π/5)(u)

(21)

where Si(s) = ∫ s

0 sin(πs ′2/2) ds ′ is the Fresnel sinus integral.
In figure 1 we plot the pulse intensity profiles s → a(s)2 for these three cases and the

corresponding functions F and G (normalized by their respective maxima). One can check
that taking �d smaller than �a reduces the range resolution for case 1 (since G is broader
than F), does not affect the resolution for case 2 (since G is proportional to F), and enhances
the resolution for case 3 (since G is narrower than F). This discussion is just the starting
point of a more general question about optimal illumination, that should address the optimal
form of the source pulse shape. This question will be addressed in a future work in more
detail.

3.4. Noise reduction

We next illustrate in an explicit fashion the mechanism responsible for the noise reduction with
CINT in the SAR configuration. Assume a simple model in which the recorded travel times
are perturbed by an additive zero-mean random vector τ (r)

n . By keeping only the leading-order

10
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Figure 1. Pulse intensity profiles and focal spots (in the range direction) for the three cases
described in (19)–(21). The solid lines plot the function G, the dashed lines plot the function F
(the two functions are equal in case 2).

terms, we have

Ĥ (ω, xn, y)Ŝn(ω)Ĥ (ω′, xn′ , y)Ŝn′(ω′) exp(iω′(n′T + 2τ0) − iω(nT + 2τ0))

= T 4
p

220π8|y0|8 â

[
Tp

(
4πγ

c0

(
(r − r0) +

(x − xn)
2

2|y0|
)

+ ω

)]

× â

[
Tp

(
4πγ

c0

(
(rs − r0) +

(xs − xn)
2

2|y0|
)

+ ω

)]

× â

[
Tp

(
4πγ

c0

(
(r − r0) +

(x − xn′)2

2|y0|
)

+ ω′
)]

× â

[
Tp

(
4πγ

c0

(
(rs − r0) +

(xs − xn′)2

2|y0|
)

+ ω′
)]

× exp

[
i

2ωc

c0|y0| (xn − xn′)(x − xs)

]
exp

(
iωc

(
τ (r)
n − τ

(r)
n′

))
. (22)

The last term in this expression is responsible for the reduction of the resolution and the
enhancement of the fluctuations. If we assume that τ (r)

n has Gaussian statistics and has
Gaussian covariance function E

[
τ (r)
n τ

(r)
n′

] = σ 2
t exp

(−(xn − xn′)2
/
l2
c

)
, then

E

[
exp

(
iωc

(
τ (r)
n − τ

(r)
n′

))] = exp

[
−ω2

cσ
2
t

(
1 − exp

(
− (xn − xn′)2

l2
c

))]
. (23)

If σtωc � 1, then

E
[

exp
(
iωc

(
τ (r)
n − τ

(r)
n′

))] � exp

(
−ω2

cσ
2
t

l2
c

(xn − xn′)2

)
, (24)

which allows us to identify the correlation radius Xc along the antenna trajectory:

Xc = lc

ωcσt

. (25)

11
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Note that the Gaussian form of (24) is general and can be obtained from any form of the
covariance function E

[
τ (r)
n τ

(r)
n′

]
, as long as it is at least twice differentiable at zero. We can

then compute the first moments of the ambiguity function. If we assume that the correlation
radius Xc is smaller than the total length of the antenna trajectory, but larger than the distance
between two successive positions of the antenna, i.e. Xa/N � Xc � Xa , then we obtain

E[I(y)] = I0

√
πXc

Xa

F

(
4πγTp

c0
(r − rs)

)
exp

(
−

(
ωcXc

c0|y0| (x − xs)

)2
)

, (26)

which shows that the azimuthal resolution has been reduced to λc|y0|/(2Xc). The covariance
function of the ambiguity function is

E[I(y)I(y′)] − E[I(y)]E[I(y′)] = I 2
0
πX2

c

X2
a

F

(
4πγTp

c0
(r − rs)

)
F

(
4πγTp

c0
(r ′ − rs)

)

× exp

(
−2

(
ωcXc

c0|y0|
(

x + x ′

2
− xs

))2
)

sinc2

(
ωcXa

c0|y0| (x − x ′)
)

, (27)

which shows (for y = y′) that the fluctuations are strong, since the variance is equal to the
square of the first moment and the signal-to-noise ratio is

E
2[I(y)]

Var(I(y))

Xc�Xa= 1. (28)

If, additionally, there is additive noise or another type of external noise, then it will be very
difficult to distinguish the coherent (mean) contribution. Moreover, the incoherent fluctuations
are rapidly varying since the correlation radius is λc|y0|/(2Xa). These fluctuations come from
the contributions of the off-diagonal terms in (10) for which |xn − xn′ | � Xc. These terms
do not bring any coherent contribution, that is why the azimuthal resolution is limited to
λc|y0|/(2Xc). However, they bring incoherent contributions which enhance the noise.

Let us now discuss the CINT functional in the configuration �d > 2�a . The CINT
functional is equivalent to the matched filter imaging functional if Xd is larger than 2Xa . If
Xd is much smaller than Xa but larger than Xc, then we find that the first moment of the CINT
functional is still the same as that of the matched filter functional

E[ICINT(y)] = I0

√
πXc

Xa

F

(
4πγTp

c0
(r − rs)

)
exp

(
−

(
ωcXc

c0|y0| (x − xs)

)2
)

, (29)

but the covariance function is different:

E[ICINT(y)ICINT(y′)] − E[ICINT(y)]E[ICINT(y′)]

= I 2
0
πX2

cXd

X3
a

F

(
4πγTp

c0
(r − rs)

)
F

(
4πγTp

c0
(r ′ − rs)

)

× exp

(
−2

(
ωcXc

c0|y0|
(

x + x ′

2
− xs

))2
)

sinc

(
ωcXd

c0|y0| (x − x ′)
)

. (30)

This shows that the azimuthal resolution is still λc|y0|/(2Xc) while the signal-to-noise ratio
increases as

√
Xa/

√
Xd , as Xd decays:

E[ICINT(y)]

Var(ICINT(y))1/2

Xc�Xd�Xa=
√

Xa√
Xd

. (31)

The reason why the signal-to-noise ratio increases is that the incoherent terms (those for which
|xn − xn′ | � Xc) contribute less and less to the CINT imaging functional when Xd decays.

12
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Table 2. The resolution and signal-to-noise ratio of the CINT method for different values of Xd in
the case of a random perturbation of the recorded travel times of the form (23). The matched filter
case is the same as the CINT case with Xd > 2Xa . The range resolution is always c0/(4γ Tp).

Xd Xd � Xc Xc � Xd � Xa 2Xa < Xd

Azimuthal resolution
λc|y0|
2Xd

λc|y0|
2Xc

λc|y0|
2Xc

SNR ratio
4√2

√
Xa

4
√

π
√

Xc

√
Xa√
Xd

1

Moreover, these incoherent terms do not contribute to the coherent image, so that the resolution
is not affected by the decay of Xd , as long as it is larger than Xc.

Finally, if Xd is smaller than Xc, then we find that

E[ICINT(y)] = I0
Xd

Xa

F

(
4πγTp

c0
(r − rs)

)
sinc

(
ωcXd

c0|y0| (xs − x)

)
, (32)

while the covariance function is

E[ICINT(y)ICINT(y′)] − E[ICINT(y)]E[ICINT(y′)] = I 2
0

√
πX2

dXc√
2X3

a

F

(
4πγTp

c0
(r − rs)

)

×F

(
4πγTp

c0
(r ′ − rs)

)
sinc

(
ωcXd

c0|y0| (x − xs)

)
sinc

(
ωcXd

c0|y0| (x
′ − xs)

)

=
√

πXc√
2Xa

E[ICINT(y)]E[ICINT(y′)]. (33)

Therefore, when Xd/Xc decays, the resolution becomes poorer, of the order of λc|y0|/(2Xd),
while the signal-to-noise ratio saturates to a value proportional to

√
Xa/

√
Xc:

E[ICINT(y)]

Var(ICINT(y))1/2

Xd�Xc=
4
√

2
√

Xa

4
√

π
√

Xc

. (34)

The reason why the signal-to-noise ratio saturates is that the incoherent terms (those for which
|xn − xn′ | � Xc) are all taken out of the CINT imaging functional when Xd is smaller than
Xc, and to reduce further Xd does not improve anymore the deblurring, while it affects the
resolution since coherent contributions are removed.

We can briefly revisit the previous results for the CINT functional imaging in the
configuration �d � �a . We obtain the same expressions as (29)–(34) with F(·) replaced by
�dTpG(·). Therefore the SNR analysis gives a result that is independent on the choice of �d .

Conclusion of the SNR analysis (see table 2). By choosing Xd of the order of Xc, we obtain
the best compromise between resolution and noise reduction. As shown in [3] the exact value
of Xd should be chosen adaptively in order to minimize the BV norm of the CINT image
functional.

3.5. Impact of an additive white noise

Assume now that the received signals consist of the superposition of the signals generated by
the backscattering of one point target ys and an additive Gaussian white noise Ŵn(ω) (white
in n and ‘almost’ white in ω):

E[Ŵn(ω)Ŵn′(ω′)] = σ 2
|vs |2ω4

cT
2
p

210π4|y0|4 φ̂(Tp(ω − ω′))δnn′ . (35)

13
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The variance parameter σ 2 has been normalized so that it is dimensionless, and the additive
white noise has the same units as the signals reflected from the target. With this normalization,
the reciprocal 1/σ is the signal-to-noise ratio of the recorded signals. This model includes
the case in which the received signals consist of the backscattering of the point target ys

and the backscattering from a large collection of small and random scatterers (see the following
subsection).

In the presence of the additive white noise (35) the CINT imaging functional can be
written as

ICINT(y) = I targ
CINT(y) + I i

CINT(y) + I ii
CINT(y), (36)

where I targ
CINT(y) is the image produced by the target in absence of random scatterers, while

I i
CINT(y) and I ii

CINT(y) are the random terms

I i
CINT(y) = ω2

cvs

4π2

∑
|n−n′ |�nd/2

∫ ∫
|ω−ω′|��d/2

Ĥ (ω, xn, y)Ĥ (ω′, xn′ , y)

× [Ĥ (ω, xn, ys)Ŵn′(ω′) + Ĥ (ω′, xn′ , ys)Ŵn(ω)] dω dω′,

I ii
CINT(y) = 1

4π2

∑
|n−n′ |�nd/2

∫ ∫
|ω−ω′|��d/2

Ĥ (ω, xn, y)Ĥ (ω′, xn′ , y)Ŵn(ω)Ŵn′(ω′) dω dω′.

The matched filter imaging functional I(y) can be expanded in the same way. In the following,
we assume once again that ωc � πγTp � T −1

p and �d > 2�a .
Let us first examine the matched filter imaging functional (i.e. the case Xd > 2Xa). The

coherent component due to the target is

I targ(y) = I0F

(
4πγTp

c0
(r − rs)

)
sinc2

(
ωcXa

c0|y0| (xs − x)

)
. (37)

The first random component is a zero-mean process and its covariance function is

E[I i (y)I i (y′)] = 2σ 2

N
I 2

0 F
1
2

(
4πγTp

c0
(r − rs)

)
F

1
2

(
4πγTp

c0
(r ′ − rs)

)

×F
1
2

φ

(
4πγTp

c0
(r − r ′)

)
sinc

(
ωcXa(x − xs)

c0|y0|
)

sinc

(
ωcXa(x

′ − xs)

c0|y0|
)

, (38)

where Fφ is a generalized version of F (we have Fφ = F in the pure white noise case):

Fφ(u) =
∣∣∣∣
∫ ∫

â(u + u′)â(u′′)φ̂(u′ − u′′) du′ du′′
∣∣∣∣
2

.

The second random component has a non-zero mean given by

E[I ii (y)] = σ 2

N
I0Fφ(0)

1
2 , (39)

and its covariance function is

E[I ii (y)I ii (y′)] − E[I ii (y)]E[I ii (y′)] = σ 4

N2

Xd

Xa

I 2
0 Fφ

(
4πγTp

c0
(r − r ′)

)

× sinc2

(
ωcXa(x − x ′)

c0|y0|
)

. (40)

The two components I i (y) and I ii (y) are not independent but they are uncorrelated

E[I i (y)I ii (y′)] = 0. (41)

14
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Let us assume now that Xd � Xa , which is the interesting CINT configuration. The
coherent component due to the target is

I targ
CINT(y) = Xd

Xa

I0F

(
4πγTp

c0
(r − rs)

)
sinc

(
ωcXd

c0|y0| (xs − x)

)
. (42)

The first random component is a zero-mean process and its covariance function is

E
[
I i

CINT(y)I i
CINT(y′)

] = 2σ 2

N

X2
d

X2
a

I 2
0 F

1
2

(
4πγTp

c0
(r − rs)

)
F

1
2

(
4πγTp

c0
(r ′ − rs)

)

×F
1
2

φ

(
4πγTp

c0
(r − r ′)

)
sinc

(
ωcXd(x − xs)

c0|y0|
)

sinc

(
ωcXd(x

′ − xs)

c0|y0|
)

. (43)

The second random component has a non-zero mean given by

E
[
I ii

CINT(y)
] = σ 2

N
I0Fφ(0)

1
2 (44)

and its covariance function is

E
[
I ii

CINT(y)I ii
CINT(y′)

] − E
[
I ii

CINT(y)
]
E

[
I ii

CINT(y′)
] = σ 4

N2

Xd

Xa

I 2
0 Fφ

(
4πγTp

c0
(r − r ′)

)

× sinc

(
ωcXd(x − x ′)

c0|y0|
)

. (45)

The two components I i
CINT(y) and I ii

CINT(y) are not independent but they are uncorrelated as
in (41):

E
[
I i

CINT(y)I ii
CINT(y′)

] = 0. (46)

The first random component I i
CINT(y) is a zero-mean noise whose support is located in

the neighborhood of the target ys . Its typical amplitude relative to the coherent contribution is
21/2σN−1/2, which is independent of the cut-off parameter Xd . The same component is found
in the matched filter imaging functional.

The second random component is distributed in the search space where its statistical
distribution is stationary. It gives rise to a background value, whose typical amplitude relative
to the coherent contribution is σ 2N−1(Xa/Xd). It has also fluctuations whose standard
deviation (relative to the coherent contribution) is σ 2N−1(Xa/Xd)

1/2. Note that the mean of
this contribution increases as Xa/Xd , while the standard deviation increases as (Xa/Xd)

1/2.
This shows that this random noise is more important for the CINT method than for the matched
filter functional, and especially the constant background is more and more noticeable as the
cut-off parameter Xd is taken smaller and smaller. In order to obtain the best signal-to-noise
ratio, one should take Xd larger than Xa , that is, one should use the matched filter imaging
functional rather than the CINT method. Therefore, the CINT imaging method is efficient to
reduce the blurring due to noise with a spatial structure, but it should not be used when the
blurring originates purely from an additive white noise.

We can revisit the previous results in the configuration �d � �a . We get

I targ
CINT(y) = Xd

Xa

(�dTp)I0G

(
4πγTp

c0
(r − rs)

)
sinc

(
ωcXd

c0|y0| (xs − x)

)
, (47)

E
[
I i

CINT(y)I i
CINT(y′)

] = 2σ 2

N

X2
d

X2
a

(�dTp)2I 2
0 Gφ

(
4πγTp

c0
(r − rs),

4πγTp

c0
(r ′ − rs)

)

× sinc

(
ωcXd(x − xs)

c0|y0|
)

sinc

(
ωcXd(x

′ − xs)

c0|y0|
)

, (48)
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Table 3. Signal-to-noise ratios in the presence of an additive noise of the form (35). The distinction
�d larger or smaller than �a plays a role only in the pre-factors that depend on the source intensity
profile a.

SNR ratio Xd � Xa 2Xa < Xd

�d � �a

G(0)

φ̂(0)F (0)
1
2

XdN

Xaσ 2

G(0)

φ̂(0)F (0)
1
2

N

σ 2

�d > 2�a

F(0)

Fφ(0)
1
2

XdN

Xaσ 2

F(0)

Fφ(0)
1
2

N

σ 2

E
[
I ii

CINT(y)
] = σ 2

N
(�dTp)I0φ̂(0)F

1
2 (0), (49)

E
[
I ii

CINT(y)I ii
CINT(y′)

] − E
[
I ii

CINT(y)
]
E

[
I ii

CINT(y′)
] = σ 4

N2

Xd

Xa

(�dTp)2I 2
0

× G̃φ

(
4πγTp

c0
(r − r ′)

)
sinc

(
ωcXd(x − x ′)

c0|y0|
)

, (50)

where

Gφ(r, r ′) =
∫ ∫

|â(s + r)|2|â(s ′ + r ′)|2â(s)â(s ′)φ̂(s − s ′) ds ds ′,

G̃φ(r) =
∫ ∫

|â(s)|2|â(s ′ + r)|2φ̂(s − s ′) ds ds ′.

Therefore, changing the configuration so that �d is smaller than �a:

– multiplies the first moments by �dTp and the second moments by (�dTp)2, which does
not affect the resolution nor the signal-to-noise ratio,

– changes the shape functions F,Fφ , which has a marginal effect on the resolution and on
the signal-to-noise ratio. We have already shown in subsection 3.3 that the resolution can
be enhanced or reduced depending on the source pulse intensity profile a(s). The same
remark holds true for the signal-to-noise ratio. Indeed, as shown in table 3, the pre-factor
for the signal-to-noise ratio is G(0)

φ̂(0)F (0)
1
2

if �d � �a and F(0)

Fφ(0)
1
2

if �d > 2�a .

When the additive noise comes from the backscattering of a collection of small random
scatterers (see the following subsection), then the function φ̂ is equal to F 1/2 and therefore:

– If �d � �a , then the pre-factor is
G(0)

φ̂(0)F (0)
1
2

=
∫ |â(u)|4 du(∫ |â(u)|2 du

)2 .

– If �d > 2�a , then the pre-factor is
F(0)

Fφ(0)
1
2

= 1

2π

( ∫ |a(s)|2 ds
)2∫ |a(s)|4 ds

.

For the three examples described in (19)–(21) we obtain

– If �d � �a , then the pre-factor is
G(0)

φ̂(0)F (0)
1
2

=

⎧⎪⎨
⎪⎩

2
3π

case 1√
2 case 2

0.66 case 3

.

– If �d > 2�a , then the pre-factor is
F(0)

Fφ(0)
1
2

=

⎧⎪⎨
⎪⎩

1
π

case 1√
2 case 2

0.50 case 3

.
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Note that the pre-factor can be enhanced or reduced when going from �d > 2�a to
�d � �a , depending on the source intensity profile a. If we consider case 1, that is the one
which is usually implemented in SAR systems, then the range resolution is degraded and the
signal-to-noise ratio reduced when we go from �d > 2�a to �d � �a .

3.6. An additive white noise model

It is possible to construct a simple model that gives a white noise of the form (35). If we assume
that the medium contains a collection of small scatterers, then the incoherent contribution to
the received signal (after deramping) is

Ŵn(ω) = ω2
c

∑
j

vj Ĥ (ω, xn, yj ) exp(iω(nT + τ0)), (51)

where vj is the reflectivity of the j th scatterer and yj is its position. When the antenna
has some directionality, then the sum over j is restricted to the scatterers located in the area
illuminated by the antenna. Let us assume that the antenna beam pattern along the x-axis is a
cone with angular aperture θ|| and with distribution w||(θ/θ||) along the axis perpendicular to
the antenna trajectory and directed toward the search area, and with angular aperture θ⊥ and
with distribution w⊥(θ/θ⊥) perpendicular to this axis. If the collection of scatterers is dense
and each scatterer is small, then the central limit theorem can be applied in the single-scattering
approximation. We obtain that Ŵn has Gaussian statistics with zero-mean and autocorrelation
function

E[Ŵn(ω)Ŵn′(ω′)] = q2F
1
2 (Tp(ω − ω′))

ŵ||
( 2θ||ωc

c0
(xn′ − xn)

)
ŵ||(0)

exp

(
i

ωc

c0|y0|
(
x2

n − x2
n′
))

.

Here q2 is given by

q2 = 〈|v|2〉ω4
cT

2
p

210π4|y0|4
[
D

c0

4πγTp

|y0|2θ||θ⊥ŵ||(0)ŵ⊥(0)

]
,

where 〈|v|2〉 is the mean squared reflectivity of the small scatterers and D is the density of
scatterers per unit volume. In this expression, the square brackets give the number of scatterers
that contribute to the noise in the recorded signals. If the distance between two successive
positions of the antenna is larger than 2πλc/θ||, then we get a white-noise model in n:

E[Ŵn(ω)Ŵn′(ω′)] = σ 2
|vs |2ω4

cT
2
p

210π4|y0|4 F
1
2 (Tp(ω − ω′))δnn′ , (52)

which has the form (35) with

σ 2 = 〈|v|2〉
|vs |2

[
D

c0

4πγTp

|y0|2θ||θ⊥ŵ||(0)ŵ⊥(0)

]
.

Note that, as the distance |y0| increases, the parameter σ 2 increases as |y0|2. This is due to the
fact that more small scatterers contribute to the noise in the recorded signals when the antenna
probes regions further away from the antenna.

3.7. Role of the antenna beam pattern

As pointed out in section 2, the antenna can be a point source, or a slotted waveguide, or a
microstrip antenna. The antenna can then be modeled by a rectangular distribution of point
sources [23], which lie in the (xy) plane, whose length (along the x-axis) is L, and whose width

17



Inverse Problems 24 (2008) 055001 J Garnier and K Sølna

(along the y-axis) is D. When there is a single target at ys and the medium is homogeneous,
then the recorded signal has the form

Sn(t)|homo = ω2
cvsw(ys − xn)

16π2|ys − xn|2 a

(
t − nT

Tp

− 2
|xn − ys |

c0Tp

)
exp

[
2iωc

( |xn − ys |
c0

− τ0

)]

× exp

[
4iπγ (t − nT − 2τ0)

( |xn − ys |
c0

− τ0

)
− 4iπγ

( |xn − ys |
c0

− τ0

)2]
.

The difference with the point-source antenna case is the presence of the function w, which
is the antenna beam pattern. In the case of a point source, it is a constant. In the case of a
rectangular distribution of point sources with length L and width D, we have for y = (x, y, z)

such that |y| is larger than L,D,L2/λc and D2/λc [8]:

w(y) = LDsinc

(
ωcL

2c0

x

|y|
)

sinc

(
ωcD

2c0

y

|y|
)

. (53)

The role of the beam pattern is the same for the matched filter and for the CINT method, and
it can be understood by noting that a reflected signal from the target can be recorded only if
the target is in the footprint of the beam pattern. Consequently:

– The x-dependence of the beam pattern gives the upper bound for the length of the antenna
path Xa . If Xa is smaller than 2λc|y0|/L, then the x-dependence of the beam pattern plays
no role. If Xa is larger than 2λc|y0|/L, then only a piece of the trajectory, with length
2λc|y0|/L, illuminates the target and plays a role. In this case, one should substitute
2λc|y0|/L for Xa in the previous results.

– The y-dependence can be used to obtain a three-dimensional image. Indeed, with a point
source as an antenna, we only get azimuthal and range resolutions, that is, information
on the coordinates xs and

√
y2

s + z2
s of the target. Using the range estimate and the

y-dependence of the beam pattern, one can distinguish between the coordinates ys and
zs . The y-dependence of the beam pattern shows that the angle between ys and zs can be
estimated with the precision λc/D.

4. Numerical simulations

We consider an experimental configuration in which the antenna is on a rail system. The center
of the search area is at y0 = (0, y0, 0) with y0 = 440 m. The length of the antenna trajectory
is Xa = 11 m. The pulse width is Tp = 2 10−6 s. The carrier frequency is ωc = 2π35.3 109

s−1. The chirp parameter is γ = 5 1014 s−2. The reference background velocity is c0 = 3 108

m s−1. In this scaling, motivated by a specific SAR instrumentation, we have indeed

Assumption 2.1; ωc � πγTp � T −1
p : 2.2 1011 � 3.1 109 � 5 105.

Assumption 3.1; Xa � y0: 11 � 440.

Assumption 3.2; X2
a

/
(λch|y0|) = 0.3 < 1.

Assumption 3.3; er = (1, 0).

The optimal range resolution is c0/(4γ Tp) ∼ 0.1 m and the optimal azimuthal resolution is
λc|y0|/(2Xa) ∼ 0.2 m.

The two target points have the same reflectivity and they are in the plane z = 0. We
plot the imaging functionals in this plane, the images are normalized by their maximal values
and plotted on a log scale. The numerical recorded signals are the homogeneous signals
Ĥ (ω, xn, ys) produced by two point targets and we assume that the recorded travel times are
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Figure 2. Standard imaging functional (adjoint or matched filter method) and CINT imaging
functionals. The recorded travel times are randomly perturbed but there is no additive white noise.
The crosses stand for the real locations of the two point targets. The coordinates x and y are in
meter and the images are plotted in dB (i.e. 10 log10(I/ max I)).

Figure 3. Same as in figure 2, but with a different realization of the perturbations.

perturbed by an additive Gaussian process. The standard deviation of this Gaussian process is
10−10 s, which corresponds to a travel distance of 0.03 m. The associated correlation radius
of the observations on the antenna is Xc = 0.4 m. In figures 2 and 3 we assume the absence
of any external additive noise, while in figures 4–6 we consider the presence of an additive
Gaussian white noise whose amplitude is equivalent to the amplitude of the unperturbed signal
(0 dB additive noise).

In figures 2 and 3 (no additive white noise) the image is very noisy for the matched filter
imaging functional. As predicted by the theory (see the moments (26) and (27)), we observe
around each target a structure with azimuthal size λc|y0|/(2Xc) and with rapid fluctuations (in
the azimuthal direction) with the correlation length λc|y0|/(2Xa). The image obtained with
the CINT method with the parameter Xd = 0.33 m (of the order of Xc) is much clearer and
has the same resolution.

In figures 4–6 we can see the impact of an additive white noise. It should be noted that
the additive white noise generates a clutter in the image whose azimuthal correlation length is
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Figure 4. Standard imaging functional and CINT imaging functionals for different values of the
cut-off parameter Xd (in dB). The recorded travel times are randomly perturbed and an additive
white noise has been added. The crosses stand for the real locations of the two point targets.
Here the minimum of the imaging functional over the search window has been subtracted before
normalization by the maximal value.

λc|y0|/(2Xa), that is, of the same order as the correlation length of the fluctuations of the main
structures associated with the targets. As a result, the target structures are now embedded
in the clutter produced by the additive white noise and they are very difficult to identify.
Furthermore, the images are not stable, in the sense that they change from one realization of
the random perturbation to the other one (compare the top-left images in figures 4 and 5).
In particular, the maximum of the imaging functional is a fluctuating quantity. The image
produced by the CINT imaging functional with the parameter Xd = 0.33 m (of the order of
Xc) has a reduced noise level and exhibits the same overall structures, which make it possible
to identify the two targets. If the parameter Xd is chosen larger than Xc, then the noise level
is still high. If the parameter Xd is chosen smaller than Xc, then the noise level is very low
but resolution has been degraded. In figures 4 and 5 the minimum of the imaging functional
is subtracted before normalization, which removes most of the background due to the additive
white noise when Xd is small. In figure 6 the minimum is not subtracted and one can see the
constant background due to the additive white noise identified in the previous subsection 3.5,
when Xd is small. There is almost no background when Xd = 0.66 m or larger, so that the
images are very similar with or without subtraction of the minimum for large Xd . Finally,
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Figure 5. Same as in figure 4 but for a different realization of the random fluctuations.

Figure 6. Same as in figure 4, but the minimum of the imaging functional has not been subtracted,
which creates the background.

note that the CINT image is less fluctuating than that obtained by the matched filter ambiguity
function, in the sense that the quality of the final image depends primarily on the statistics
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of the random fluctuations, and not on the particular realizations (compare the bottom-left
images in figures 4 and 5).

5. Conclusion

In this paper, we have shown that the CINT imaging method can enhance the signal-to-noise
ratio dramatically, without affecting the resolution. It is efficient when the fluctuations of the
recorded signals have a spatial correlation (along the antenna trajectory) that is larger than
the distance between two successive positions of the antenna and smaller than the length of
the antenna trajectory. However, it is not efficient to deal with a pure additive white noise,
in the presence of which the matched filter processing should be used. We have discussed the
advantages and the limitations of the CINT strategy in the SAR context. On the one hand, we
have stressed that the SAR method based on the use of a strongly chirped source is already in
a CINT configuration in the frequency domain. On the other hand, we have shown the benefit
of the CINT operation in the spatial domain, by showing that statistically stable images can be
obtained with a very reduced noise level. An optimal compromise between the signal-to-noise
ratio and resolution can be achieved by a proper choice of the spatial cut-off parameter, which
is of the order of the correlation radius of the fluctuations of the recorded signals along the
antenna trajectory.
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Appendix. Examples

The results of this paper are derived in the regime of separation of scales ωc � πγTp � T −1
p .

This is in fact the typical SAR regime. For instance:

– The parameters of the satellite ERS-1 are the following ones [16]. The carrier
frequency is ωc = 2π5.3 109 s−1. The pulse duration is Tp = 37.1 10−6 s. The
chirp parameter is γ = 4.2 1011 s−2. As a result we have ωc � πγTp � T −1

p

(3.3 1010 � 4.9 107 � 2.7 104).
– An example of SAR design is given in [5, p. 76]: ωc = 2π 1010 s−1, Tp = 38.5 10−6 s,

and γ = 4.8 1012 s−2. As a result we have ωc � πγTp � T −1
p (6.3 1010 � 5.8 108 �

2.6 104).

References

[1] Borcea L, Papanicolaou G and Tsogka C 2005 Interferometric array imaging in clutter Inverse
Problems 21 1419–60

[2] Borcea L, Papanicolaou G and Tsogka C 2006 Adaptive interferometric imaging in clutter and optimal
illumination Inverse Problems 22 1405–36

[3] Borcea L, Papanicolaou G and Tsogka C 2006 Coherent interferometric imaging Geophysics 71 S1165–75
[4] Borcea L, Papanicolaou G and Tsogka C 2006 Coherent interferometry in finely layered random media SIAM

Multiscale Model. Simul. 5 62–83
[5] Carrara W G, Goodman R S and Majewski R M 1995 Spotlight Synthetic Aperture Radar (Boston: Artech

House)

22

http://dx.doi.org/10.1088/0266-5611/21/4/015
http://dx.doi.org/10.1088/0266-5611/22/4/016
http://dx.doi.org/10.1190/1.2209541
http://dx.doi.org/10.1137/050633524


Inverse Problems 24 (2008) 055001 J Garnier and K Sølna
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